INTRODUCTION

PROPRIETARY NOTICE
The information contained in this publication is derived in part from proprietary and patent data. This information has been prepared for the express purpose of assisting operating and maintenance personnel in the efficient use of the instrument described herein. Publication of this information does not convey any rights to use or reproduce it, or to use for any purpose other than in connection with the installation, operation and maintenance of the equipment described herein.

WARNING!
This instrument contains electronic components that are susceptible to damage by static electricity. Proper *handling procedures must be observed during the removal, installation, or handling or internal circuit boards or devices.

Handling Procedure:
1. Power to unit must be removed.
2. Personnel must be grounded, via wrist strap or other safe, suitable means, before any printed circuit board or other internal devices is installed, removed or adjusted.
3. Printed circuit boards must be transported in a conductive bag or other conductive container. Boards must not be removed from protective enclosure until the immediate time of installation. Removed boards must be placed immediately in a protective container for transport, storage, or return to factory.

Comments:
This instrument is not unique in its content of ESD (electrostatic discharge) sensitive components. Most modern electronic designs contain components that utilize metal oxide technology (NMOS, CMOS, etc.). Experience has proven that even small amounts of static electricity can damage or destroy these devices. Damaged components, even though they appear to function properly, exhibit early failure.

CONTENTS

Warranty and Liability
General Description
Principle of Operation
Specifications
Typical Applications
Typical Installation Requirements
Installation Guide
Choosing a Sonar Transducer
Choosing a Sonar Cleaning System
Dimensions
Floating Sonar Assembly
Impact Plate
Actuator Cleaner
Bracket Nozzle Assembly
Sonar Transducer Scraper Option
Wiring Diagrams
Devicenet / Profibus
Software Menu Description
Entering Data
Startup - Commissioning
Communication
Error Codes
Troubleshooting
Part Numbering
Application References
WARRANTY AND LIABILITY

Hawk specialises in ultrasonic, sonic and sonar level transmitters and have thousands of installed instruments in critical applications around the world.

Hawk guarantees the ‘ORCA’ sonar range, when delivered, is free of material defects and undertakes to replace, repair any defective part, free of charge. Hawk will provide two levels of warranty period.

A two year electronic warranty period extends from this delivery date, an installed performance warranty is available through our distributor network and the factory.

Hawk warranty, solely covers, workmanship, material defects, only, unless specified in writing by the factory.

The warranty does not cover, wearing parts, consumables, incorrect handling, incorrect installation, or using the instrument for anything other than what it is intended to do.

PRINCIPLE OF OPERATION

The ORCA Sonar Series transducer emits a high powered acoustic pulse, which is reflected from the interface density selected.

The reflected signal is processed using specially developed software algorithms, that eliminates lighter floating densities, stratified layers, when measuring “RAS” or “BED” levels. It can be calibrated to measure lighter densities like “FLOC” or one of the outputs could be used for a “CLARITY” output, similar to a basic turbidity transmitter measuring solids in suspension.

By choosing the correct sonar transducer frequency, the ORCA sonar guarantees the best optimized performance off both light density interfaces and heavy density interfaces.

GENERAL DESCRIPTION

- The ORCA Sonar Series offers a wide and comprehensive range of advantages for measuring interface levels, etc.
- Large range of sonar frequencies, to optimize the best response in the tank.
- Largest range of industrial cleaning mechanisms, to insure continuous performance.
- Suitable for measuring rocks, powders, viscous and aggressive media.
- Suitable for all sonar applications including: primary sedimentation, secondary/final clarifiers, thickeners, CCD’s, sequential batch reactors.
- Max range 60m.
- Supply: 90-260 vac 50/60 hz 12-30 vdc.
- Calibration by programming density (grams/liters).

- Two independent outputs available 2 x 4-20ma analogue.
- Modbus comms standard
- GSM module remote support capability for calibration, commissioning or technical back-up.
SPECIFICATIONS

Sonar Frequency Selection
- 30kHz, 150kHz, 300kHz, 450kHz, 700kHz

Operating Voltage
- 90 - 260Vac 50/60Hz
- 12 - 30Vdc
(residual ripple no greater than 100mV)

Power Consumption
- <10VA @ 240Vac
- <10W @ 24Vdc

Analog Output
- Either single or dual analogue
 1 x 4-20mA (isolated) 600 ohms max.
 1 x 4-20mA (non isolated) 600 ohms max.

Communications
- GosHawk, HART, Modbus, Profibus DP, DeviceNet, Foundation Fieldbus, Profibus PA.

Relay Output
- 3 x s.p.d.t. 0.5amp/240vac
 Form c. type non-inductive load.
 Fully programmable

Maximum Range
- 65 meters

Blanking Distance
- 450mm: 150kHz, 300kHz, 450kHz, 600mm: 700kHz, 30kHz

Resolution
- 1mm

Accuracy
- +/- 0.25%

Operating Temperature
- Remote Electronics -40°C to 70°C
- Sonar Transducer Standard -40°C to 80°C
- Sonar Transducer Hi-Temp -40°C to 150°C

Transducer/Transmitter Separation
- >500m
 Note: Must be BELDEN 3084A

IMPORTANT

“USE SPECIFIED CABLE ONLY”

Cable (Sonar Transducer)
- BELDEN 3084A

Sealing
- Remote Electronics IP67
- Remote Transducer IP68

Cable Entries
- Remote Electronics: 3 x 20mm 1 x 16mm

Typical Weight
- Remote Electronics 1kg
- Remote Transducer 1kg
- Cleaning Mechanism 5kg
TYPICAL APPLICATIONS

<table>
<thead>
<tr>
<th>Area</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Treatment Plant</td>
<td></td>
</tr>
<tr>
<td>Primary Sedimentation Tank</td>
<td>Floc level / sludge blanket level</td>
</tr>
<tr>
<td>Sludge Thickener Tank</td>
<td>Sludge bed level / clarity suspended solids / floc level</td>
</tr>
<tr>
<td>Calcium Hydroxide Reactor</td>
<td>Sand/pellet bed level</td>
</tr>
<tr>
<td>Sodium Hydroxide Reactor</td>
<td>Sand/pellet bed level</td>
</tr>
<tr>
<td>Sewage Treatment Plant</td>
<td></td>
</tr>
<tr>
<td>Primary Sedimentation Tank</td>
<td>Sludge blanket level</td>
</tr>
<tr>
<td>Secondary / Final Clarifier</td>
<td>RAS blanket level / rag/pinfloc layer / clarity suspended solids</td>
</tr>
<tr>
<td>Sludge Thickener Tank</td>
<td>Sludge bed level / clarity suspended solids</td>
</tr>
<tr>
<td>“DAF” Tank</td>
<td>Sludge bed level / floating sludge level</td>
</tr>
<tr>
<td>Sequential Batch Reactor (SBR)</td>
<td>Settling bed level / RAS blanket level</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
</tr>
<tr>
<td>Primary Sedimentation Tank</td>
<td>Sludge blanket level</td>
</tr>
<tr>
<td>Secondary Clarifier Tank</td>
<td>RAS blanket level / clarity suspended solids / rag/pin-floc layer</td>
</tr>
<tr>
<td>Thickener Tank</td>
<td>Sludge bed level / clarity suspended solids / floc level</td>
</tr>
<tr>
<td>“DAF” Tank</td>
<td>Sludge bed level / floating sludge level</td>
</tr>
<tr>
<td>Sequential Batch Reactor (SBR)</td>
<td>Settling blanket level / RAS bed level</td>
</tr>
<tr>
<td>Carbon Column</td>
<td>Carbon bed level</td>
</tr>
<tr>
<td>Mining/Mineral processing</td>
<td></td>
</tr>
<tr>
<td>Clarifier Tank</td>
<td>Blanket level / clarity suspended solids / stratified floc layers</td>
</tr>
<tr>
<td>Thickener Tank</td>
<td>Sludge bed level / clarity suspended solids / stratified floc layers</td>
</tr>
<tr>
<td>CCD’s Tank</td>
<td>Sludge bed level / clarity suspended solids / stratified floc layers</td>
</tr>
<tr>
<td>Settling Ponds</td>
<td>Sludge bed level</td>
</tr>
</tbody>
</table>
TYPICAL INSTALLATIONS REQUIREMENTS

Positioning the Sonar Transducer

(1) The sonar transducer should be installed approximately 15cm (transducer housing length) below the liquid level. Where the liquid level varies (sbr) use a floating sonar version. The surface face of the sonar transducer must be immersed under the liquid level at all times.

(2) Circular Tanks - centre feed (fixed or moving bridge versions) position the sonar transducer 1/3 radius from the tank wall. This is to minimise the disturbance to the sonar measuring pulses.

(3) Rectangular Tanks - position the sonar transducer at least 700mm from the side wall. Never position the sonar transducer over chains, site the transducer, to minimise disturbance from the incoming liquid.
Sonar Transmitter – Mounting
Requirements
Select a suitable mounting position, preferably not in direct sunlight. If necessary utilize a sunshade.
Observe the maximum and minimum temperature limits (-20ºc (-4ºf) to 70ºc (165ºf)).
Do not mount the sonar transmitter near high sources of EMF, such as motor starters, variable speed drives or 3 phase cables. Avoid mounting in high vibration areas, or use rubber absorption mounts.
Be careful when removing the cable and compression glands.

Sonar Transducer – Mounting
Requirements
Mount transducer at least 100mm below upper liquid level.

Round Tanks – Centre Feedwell
Mount the sonar transducer and cleaning mechanism, approximately one third radius from the outside tank wall. This is the same whether it is a moving or fixed bridge installation.
Do not mount near high infeed turbulence.
Choose a site installation where the infeed is least disturbed.

Rectangular Tanks – End Feed
Mount the sonar transducer and cleaning mechanism away from high infeed turbulence. A clearance of 700mm from the side wall.
Do not mount directly over scraper, chain mechanisms. Choose a site installation where the infeed is least disturbed.

Floating Sonar – SBR
Mount the floating sonar transducer and cleaning mechanism as close as practicable to the launders.
Mount at least 1.00 metres from side walls. Make sure alignment guides are installed on the mounting bracket for decanter ranges above 500mm.
CHOOSING A SONAR TRANSDUCER

The **ORCA** Sonar offers seven different frequency ranges. The most important element of the sonar interface transmitter is the operating frequency of the sonar transducer as this will determine whether the sonar operating frequency is optimized to the interface application.

We offer a range of frequencies because the “basic rules of physics – sound transmission through liquids” suggests, that one frequency will not handle all applications.

Defraction is the term used for sound bending or passing an object in its path. Where large particles are in suspension a low frequency sonar transducer is used. For measuring extremely low density interfaces, a very high frequency sonar sensor is used. All **ORCA** series sonar transducers will work with the **ORCA** sonar transmitter.

Note: No set-up changes required when changing frequencies.

Consult your distributor or the factory on the choices of transducer frequency for your application.
Some successful examples commonly found within the water treatment plants are:

Water Treatment Plants:
- Primary Sedimentation Clarifiers
 Controlling floc level and clarity of water
 Part no: OSIRT003S4XC6 (single crystal 300kHz)

- Thickener Tank (Polymer Dosed)
 Controlling floc level and clarity of water polymer dosing.
 Part no: OSIRT0302S4XC6 (3 crystal array 150kHz)

Waste Water/Sewage Treatment plants:
- Primary Sedimentation
 Controlling bed level
 Part no: OSIRT002S4XC6 (single crystal 150kHz)

- Secondary / Final Clarifier
 Controlling RAS blanket, fluff/RAG layer and clarity of water
 Part no: OSIRT002S4XC6 (single crystal 150kHz)

- Thickener (Gravity)
 Controlling bed level, clarity of water
 Part no: OSIRT0302S4XC6 (3 crystal array 150kHz)

- Thickener (Polymer dosed)
 Controlling bed level, clarity of water polymer dosing
 Part no: OSIRT0302S4XC6 (3 crystal array 150kHz)

- SBR (Sequential Batch Reactor)
 Controlling decant start time, polymer dosing if required
 Part no: OSIRT003S4XC6 (single crystal 300kHz)

Part numbers:
1. Primary Sedimentation Tank - Surface Scum Collectors
 OSIRT002S4XC6+OSIRDYX+OSIRME-L2+OSIRSC-E

2. Secondary Clarifier - Moving Bridge
 OSIRT002S4XC6+OSIRDYX+OSIRME-L2+OSIRSC-A

3. Secondary Clarifier - Fixed Bridge
 OSIRT002S4XC6+OSIRDYX+OSIRME-L2+OSIRSC-E

4. Thickener
 OSIRT302S4XC6+OSIRDYX+OSIRME-L2+OSIRSC-A
CHOOSING A SONAR TRANSDUCER - MINING

Hawk has recognised with long term experience that the selection of the sonar transducer type is so important for the success of the sonar system to work under all environmental conditions.

In the mining industry, measuring the compacted BED level, in paste thickener, tailings thickener, concentrate thickener, CCD’s, lamella thickeners, hi-rate thickeners vary considerably in the process environment.

Suspended solids concentrations, between the launder and BED level can change rapidly, due to a change in the ore type settling characteristic. High frequency, single crystal sonar transducers will not penetrate high suspended solids in the thickener during these unsettled conditions.

Hawk have developed a high powered range of multiple crystal array sonar transducers that have the capability of operating and penetrating suspended solids to give reliable performance measuring the heavy density BED level. Each sonar transducer can perform two independent functions simultaneously. The second channel can be used to provide a clarity or simple turbidity output as it measures the suspended solids levels between the BED level and the face of the sonar transducer near the launder level. The clarity output gives excellent process feedback information to the control room operators on how well the flocculent dosing system is working.

Tailings thickeners
All mining concentrators and coal preparation plants have tailings thickeners. They treat the process water by removing suspended solids and then return the water back to the concentrator or coal prep plant. They pump the solids to a tailings dam. Most tailings thickeners do not run efficiency because of a number of factors including:

1. The thickener does not have a reliable BED level interface transmitter that will work under all environmental conditions and is not affected by density change.

2. The thickener does not have turbidity or a suspended solids transmitter that will provide feedback to the control room operator on how the flocculent dosing system is working.

By not utilising a BED level transmitter that is not affected by density, tailings thickener BED level are generally run too low in the cone of the thickener reducing the underflow density that is pumped to the tailings dam and also pumping too much water in the tailings.

The net effect is that the tailings dams will fill in volume faster and the additional cost of pumping the water back from the tailings dam to the concentrate or prep plant. Most tailings thickeners utilize an automatic flocculent dosing system that takes samples of feedwell water and carries out an automatic jar settling test. This is so
important where multiple ore types are processed through the plant because of different settling rates and characteristics. However the observers or clearometers floc batch systems fail from time to time and the tailings thickener can change very quickly to not settling out the suspended solids. The clarity output from the sonar transmitter can alarm this condition to the operator in the control room. The clarity output can also be used in the control loop for the floc dosing system as a back up. The use of the sonar BED level transmitter will allow the tailings thickener to be run automatically in conjunction with the underflow density transmitter and torque amps from the scraper.

This will reduce costs in:
1. Floc dosing
2. Return water pumping costs from the tailings dam
3. Reduce tailings volume to the tailings dam
4. Increase the quality and volume of water returned to the concentrator

Cleaning Mechanism:
Each sonar transmitter is provided with a scum cleaning mechanism to suit the mechanical layout of the thickener and allows the sonar transmitter to work without operators needing to clean the sensor.

Some successful examples commonly found within the Mining industry:

Coal Preparation Plants
Tailings thickener: Controlling heavy bed level and clarity (suspended solids)
Part no: OSIRT0S4XC6 (3 crystal array 150kHz)

Mining Concentrators
Tailings thickeners: Controlling heavy bed and clarity (suspended solids)
Part no: OSIRT0S4XC6 (3 crystal array 150kHz)

Concentrate thickeners: Controlling heavy bed level and clarity (suspended solids)
Part no: OSIRT70S4XC6 (7 crystal array 150kHz)

Clarifiers: Controlling bed level and lighter floc interface
Part no: OSIRT303S4XC6 (3 crystal array 300kHz)

Tailings dam: Controlling bed level
Part no: OSIRT002S4XC6 (single crystal 150 kHz)

CCD’s: Controlling heavy bed level and clarity (suspended solids)
Part no: OSIRT302S4XC6 (3 crystal array 150kHz)

Paste thickeners: Controlling heavy bed level and clarity (suspended solids)
Part no: OSIRT0S4XC6 (3 crystal array 150kHz)

Lamella thickeners: Controlling lighter interface from entering plates
Part no: OSIRT03S4XC6 (3 crystal array 300kHz)

Hi-Rate thickeners: Controlling heavy bed level and clarity (suspended solids)
Part no: OSIRT0S4XC6 (3 crystal array 150kHz)

Part numbers:
1. Tailings thickeners c/- surface scum boom
OSIRT0S4XC6+OSIRDYX+OSIRME-L3+OSIRSC-E

2. Tailings thickeners no surface scum boom
OSIRT0S4XC6+OSIRDYX+OSIRME-L3+OSIRSC-A

3. Concentrate thickeners
OSIRT70S4XC6+OSIRDYX+OSIRME-L3+OSIRSC-A

4. Concentrate thickener c/- surface scum boom
OSIRT70S4XC6+OSIRDYX+OSIRME-L3+OSIRSC-E
ChoosIng A Sonar Transducer - Mining

Sonar transducer penetration capability depending on power level.

Single crystal: PN Clarifier, clarifiers, tailings dam

3 crystal array: Tailings thickeners, paste thickener, hi-rate thickener, CCD’s

7 crystal array: Concentrate thickeners, CCD’s
CHOOSING A SONAR CLEANING SYSTEM

The ORCA Series Sonar have developed a range of sonar transducer "sludge" cleaning options, that requires no maintenance. They are industrially designed to minimise downtime.

Types available:
(a) Electric actuator
(b) Pneumatic actuator
(c) Rotary scum brush
(d) Floating sonar - actuator
(e) Impact plate with counterweight

* Remember all sonar sensors need to have some form of cleaning mechanism.

Possible applications, where each type of sludge cleaning option are used.

(a) Electric Actuator
(most common used)

Applications:
Fixed bridge, moving bridge circular or rectangular clarifier.
Fixed bridge thickener or CCD.
Mounted off a side wall of a tank etc.

Where not to use the Electric Actuator
(1) Do not use the electric actuator cleaner version, when surface scum collectors or moving surface or sub-surface mechanical parts can come in contact with the sonar sensor and mounting pipe.
(2) The electric actuator does not have an Ex approval. Consult the factory.

(b) Pneumatic Actuator

Applications:
Fixed bridge, moving bridge circular or rectangular clarifier.
Fixed bridge thickener or CCD.
Mounted off side wall of a tank etc.
Can be used in ex approved applications.

Where not to use the pneumatic actuator.
(1) Do not use the pneumatic actuator scum cleaner version when surface scum collectors or moving surface or sub-surface mechanical parts can come in contact with the sonar sensor or mounting pipe.

(c) Rotary Scum Brush

Applications:
Generally used in applications where the clearance space is limited.

Where not to use the Rotary Scum Brush
(1) Do not use the rotary scum brush when surface scum collectors or moving surface or sub-surface mechanical parts can come in contact with the rotary brush, sonar sensor or mounting pipe.
(2) Use Ex approved type in classified zone.
(3) Do not use in heavy scale build-up applications.
CHOOSING A SONAR CLEANING SYSTEM

(d) Floating Sonar - Actuator Type
Applications:
- SBR, IDAL, IDEA sequential batch reactors with varying water heights.
- Continuous measurement of bed level in settlement ponds.

Where not to use the Floating Sonar–Actuator Version
(1) Do not use the floating sonar - actuator cleaner version when surface scum collectors or sub-surface mechanical parts can come in contact with the sonar sensor float or mounting pipe.

(e) Impact Plate with Counterweight
Applications:
- Used where a surface scum connector passes in the path of the sonar sensor and mounting pipe.
- Circular and rectangular primary and secondary clarifiers.
- Fixed bridge or moving bridge thickeners, picket fence thickeners or CCD’s.
DIMENSIONS

RAIL BASE PLATE

FLOATING SONAR SENSOR

OSIRT Transducer

1" BSP Nipple

135 mm (5.3")

75mm (2.9")

OSIRT Fibreglass Transducer

1" BSP Nipple

330mm (12.9")

75mm (2.9")
DIMENSIONS

SONAR IMPACT PLATE

- 379.60mm (14.9")
- 156mm (6.1")
- 570mm (22.4")
- 762.5mm (30")

SONAR ACTUATOR CLEANER

- 423mm (16.6")
- 156mm (6.1")
- 570mm (22.4")
- 762.5mm (30")

X - Pipe length to suit
* distance from safety rail or Bridge may be varied

Note: Advise physical dimension of surface scum rake.
DIMENSIONS

Front

192mm (7.6")

166mm (6.5")

3 x 20mm (0.7"), 1 x 16mm (0.6"

Knock outs

Side

106mm (4.2")

76.5 (3"

61mm (2.4")

8mm (0.3")

DIN Rail Mounting (clips included)

Back

192mm (7.6")

145mm (5.7")

160mm (6.3")

166mm (6.5")

151mm (5.9")

166mm (6.5")

3 x 20mm (0.7"), 1 x 16mm (0.6"

Knock outs
FLOATING SONAR - ASSEMBLY

Part No. Code D

Floating Sonar Assembly
FLOATING SONAR - PARTS

Part No. Code D

- Water Level Target
- Sliding Pipe
- Pipe Guide
- Sonar Transmitter
- Water Level Transmitter
- Mounting Bracket
- Electro-Actuator Sonar Cleaning
- Float with Sonar Sensor
IMPACT PLATE - DIMENSIONS

Part No. Code E

X – Pipe length to suit
* distance from safety rail or Bridge may be varied

Bracket 316SS

Hole Dia. 8.5mm

Rail Base Plate
IMPACT PLATE - ASSEMBLY

Part No. Code E
ACTUATOR CLEANER - DIMENSIONS

Part No. Code A

X – Pipe length to suit
* distance from safety rail or Bridge may be varied

Bracket 316SS

Hole Dia. 8.5mm

Rail Base Plate
SONAR BRACKET NOZZLE - ASSEMBLY

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bracket SUBA</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Custom 10inch Flange thin (5mm)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Rubber Slide</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Custom 10inch Flange</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Rubber Bellow Seal</td>
<td>1</td>
</tr>
</tbody>
</table>
SONAR TRANSDUCER SCRAPER OPTION

This automated scraper system is used for applications where suspended solids need to be mechanically removed from the transducer face during each cleaning sequence water sprays can be included with this option.

Part Number: OSIRSC-ZS
WIRING DIAGRAM

ORCA 234 Remote Transmitter with Actuator

![Wiring Diagram of ORCA 234 Remote Transmitter with Actuator]
ORCA 234 Remote Transmitter with Actuator & Junction Box

SONAR 234 REMOTE TRANSMITTER

<table>
<thead>
<tr>
<th>RELAY 1</th>
<th>RELAY 2</th>
<th>RELAY 3</th>
<th>ACTUATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>COM</td>
<td>NO</td>
<td>RELAY 1</td>
</tr>
<tr>
<td>NC</td>
<td>COM</td>
<td>NO</td>
<td>RELAY 2</td>
</tr>
<tr>
<td>NC</td>
<td>COM</td>
<td>NO</td>
<td>RELAY 3</td>
</tr>
<tr>
<td>BLK</td>
<td>BLU</td>
<td>BRN</td>
<td>GRN</td>
</tr>
<tr>
<td>YEL</td>
<td>SHLD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALOG1

- 4-20mA

ANALOG2

- 4-20mA

COMMENTS

- DC-IN
- AC-IN
- 90-265 VAC

Test

- B
- A
- N
- L

4-20mA

- BOTTOM
- TOP

TRANSDUCER

Belden 3084A cable

Refer to Graph 1 for cable selection
Analog Output 1

Terminal Connections for AC Supply – Model dependant

a) Modulating from User’s External DC Supply (RL to Pos.)

NOTE1*: RL Max = 750Ω if user DC Supply 24V

b) Modulating from User’s External DC Supply (RL to Neg.)

NOTE1*

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>AC Supply</td>
</tr>
<tr>
<td>-</td>
<td>RL Max 750Ω</td>
</tr>
<tr>
<td>PLC</td>
<td>Use shielded cable</td>
</tr>
<tr>
<td>DCS</td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Is 4-20mA</td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>AC Supply</td>
</tr>
<tr>
<td>-</td>
<td>RL Max 750Ω</td>
</tr>
<tr>
<td>PLC</td>
<td>Use shielded cable</td>
</tr>
<tr>
<td>DCS</td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Is 4-20mA</td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>AC Supply</td>
</tr>
<tr>
<td>-</td>
<td>RL Max 400Ω</td>
</tr>
<tr>
<td>PLC</td>
<td>Use shielded cable</td>
</tr>
<tr>
<td>DCS</td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Is 4-20mA</td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

NOTE2*: Isolated current output can be made common with external DC Supply Positive or Negative if required. (e.g. RL – connected to GND)
WIRING DIAGRAM

Analog Output 1

d) 4 Wire DC – Driving from Internal Isolated Supply (I+)

![Diagram of 4 Wire DC connection](image)

NOTE2*

Terminal Connections for DC Supply – Model dependant
e) 3 Wire DC – Modulating from Common User Supply (RL to +DC)

![Diagram of 3 Wire DC connection](image)

NOTE1*

f) 3 Wire DC – Modulating from Common User Supply (RL to GND)

![Diagram of 3 Wire DC connection](image)

NOTE1*
WIRING DIAGRAM

Analog Output 2

Terminal Connections for DC Supply – Model dependant

e) 3 Wire DC – Modulating from Common User Supply (RL to +DC)

![Wiring Diagram](image)

NOTE:
Internal SMART card configured for 3, 4 wire.

NOTE:
RL Max = 750Ω if user DC Supply 24V

f) 3 Wire DC – Modulating from Common User Supply (RL to GND)

![Wiring Diagram](image)

NOTE:
Internal SMART card configured for 3, 4 wire.

NOTE:
RL Max = 750Ω if user DC Supply 24V
DEVICENET SYSTEM

DEVICENET MASTER

5. V+
4. CAN_H
3. SHEILD
2. CAN_L
1. V-

EXT TERM
DEVICENET

Set the BaudRate and the DeviceNet Address in Sultan

Factory defaults of baudrate and FBusAdds are 125kbps and 63 in a Sultan unit with DeviceNet CommType. To modify these values follow the instructions below.

1. Go to the Output Adjustment menu
2. Use the Up and Down push buttons to reach the CommType parameter
3. Make sure that the CommTyle is set to DeviceNet
4. Press the CAL button twice
5. DeviceID will be displayed
6. Use the Down push button to reach the BaudRate parameter
7. The default value for the BaudRate is 125kbps. Press CAL button and use the Up and Down push buttons to modify this value
8. Press CAL button when finished
9. Use the Down push button to reach the FBusAdds. The default value of the FieldBus Address is 63. Press CAL button and use the Up and Down push buttons to modify this value
10. Press CAL button again when finished

Output Data

Profibus/DeviceNet now transmit 18 bytes/9 words, description of the words is as follows (For firmware version 5.54 and above)

1. Displayed Distance (Space Distance is the Primary Variable)
2. Percentage (Percent of Range)
3. Hi Level (Upper Range)
4. Low Level (Lower Range)
5. Status Flags

<table>
<thead>
<tr>
<th>Failed</th>
<th>~~~~~~</th>
<th>Search</th>
<th>0</th>
<th>Echo Cf m : 1 = True, 0 = False</th>
<th>Echo R : 1 = True, 0 = False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit F</td>
<td>Bit E</td>
<td>Bit 3</td>
<td>Bit 1</td>
<td>Bit 0</td>
<td></td>
</tr>
</tbody>
</table>

Bit0 = Echo was received inside the span.
Bit1 = Echo is Confirmed.
Bit3 = Searching is searching for an Echo.
BitF = Unit has Failed to detect an Echo.

6. Displayed Distance2 (Second Variable)*
7. Percentage2 (Second Percent of Range)*
8. Displayed Distance3 (Third Variable)+
9. Percentage3 (Third Percent of Range)+

* Used for ORCA Sonar and Differential output on a Sultan
+Only used for ORCA Sonar Clarity output.
Set the ProfiBus Address in Sultan

Factory defaults of FBusAdds is 126 in a Sultan unit with ProfiBus CommType. To modify this value follow the instruction below:

1. Go to the output Adjustment menu.
2. Use the Up and Down push buttons to reach the CommType parameter.
3. Make sure that the CommType is set to ProfiBus
4. Press the CAL button twice.
5. DeviceID will be displayed
6. Use the Down push button to reach the BaudRate parameter.
7. The value for the BaudRate is selected automatically and can not be modified.
8. Use the Down push button to reach the FBusAdds. The default value of the FieldBus Address is 126. Press CAL button and use the Up and Down push buttons to modify this value.
9. Press CAL button again when finish.

Output Data

ProfiBus/Devicenet now transmit 18 bytes/9 words, description of the words is as follows (For firmware version 5.54 and above)

1. Displayed Distance (Space Distance is the Primary Variable)
2. Percentage (Percent of Range)
3. Hi Level (Upper Range)
4. Low Level (Lower Range)
5. Status Flags

<table>
<thead>
<tr>
<th>Failed</th>
<th>~~~~~~</th>
<th>Search</th>
<th>0</th>
<th>Echo Cfm : 1 = True, 0 = False</th>
<th>Echo R : 1 = True, 0 = False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit F</td>
<td>Bit E</td>
<td>Bit 3</td>
<td>Bit 1</td>
<td>Bit 0</td>
<td></td>
</tr>
</tbody>
</table>

Bit0 = Echo was received inside the span.
Bit1 = Echo is Confirmed.
Bit3 = Searching is searching for an Echo.
BitF = Unit has Failed to detect an Echo.

6. Displayed Distance2 (Second Variable)*
7. Percentage2 (Second Percent of Range)*
8. Displayed Distance3 (Third Variable)+
9. Percentage3 (Third Percent of Range)+

* Used for ORCA Sonar and Differential output on a Sultan
+ Only used for ORCA Sonar Clarity output.
SOFTWARE MENU DESCRIPTION

ENTERING DATA
All software adjustments are achieved via the four PUSH BUTTONS on the front panel.

In Run Mode
(A) Press and hold - interrupts normal operations and allows access to software menu headings.

In Calibrate Mode
(B) Momentary press - saves selected value.
 Press and hold - scrolls through set-up menus and parameters.

In Run Mode
(A) Displays operating diagnostics on display LCD.

In Calibrate Mode
(B) Increases display value.
(C) Scrolls through software parameters.

In Run Mode
(A) Displays operating diagnostics on display LCD.

In Calibrate Mode
(B) Decreases display value.
(C) Scrolls through software parameters.

In Calibrate Mode
(A) Press when all calibrations are complete.
(B) Stores all parameters, returns the ORCA Sonar to normal operating run mode.
SOFTWARE MENU DESCRIPTION

Menu Headings

- QUICKSET
 - UNIT
 - APP TYPE
 - APP TYPE 2
 - FAILSAFE
 - DISP MODE
 - I: SEN ADD
 - OFFSET
 - LOCK CODE

- TX SETUP
 - GAIN
 - GAIN STEP
 - DIST STEP
 - THRESHOLD
 - BLANKING
 - EMPT DIST
 - TEMP TRIM
 - DIST TRIM
 - VELOCITY
 - E WIDTH 1
 - GAIN 2
 - THRESHOLD 2
 - E WIDTH 2
 - FLOCK

- OUTPUT AD
 - FILL DAMP
 - EMPTY DAMP
 - 4mA ADJ
 - 20mA ADJ
 - ANALOG
 - 20mA ADJ 2
 - 20mA ADJ 2
 - SIMULATE
 - COMMUNICATIONS TYPE - MODPUS
 - OMM TYPE
 - RLY MOD 1
 - RLY MOD 2
 - RLY MOD 3
 - CLEANING
SOFTWARE MENU DESCRIPTION

QUICKSET

Units: Selectable metres, centimetres, feet, inches.

App Type (application type): Selectable,
RAS: Return activated sludge blanket level
Bed: Bed level, thickener, primary sedimentation
Floc: Floc level, floc/rag level

APP Type 2
OFF
BED
RAS
FLOC
CLARITY

FAIL SAFE
20mA, 4mA, Lst Knw, 20.20mA, 3.80A, 3.50mA

FAIL TIME
3.0min - 0.0min

DISP MODE
Level
% Level
SPACE

I: SEN ADD
1 to 25

OFFSET
0.0cm
500.0cm

Continued next page
Density (choose density)
0.1 gram to 10 gram/litre

Calibrate (fine adjust density)
0.0% to 26.7%

Lo Level
0% or 4ma position
0 - 60 metres

Hi Level
100% or 20ma position
0 - 60 metres

Fill Rate
0.1m to >20m per hour fill rate

Empty Rate
0.1m to >20m per hour pump out rate
Continued from previous page

- **Failsafe Mode**
 Options: 3.50ma, 3.80ma, 20.20ma, last known, 4.00ma, 20.00ma

- **Fail Time**
 0.0 minutes to >20.0 minutes

- **Display Mode**
 Options: space: (distance from transducer to interface)
 Level: (distance from bottom of tank to depth of interface)
 % Level: percentage of vessel full.

- **Offset**
 Allows the user to move the start point of the measurement
 0.0m to 5.0m

- **Lock Code**
 Allows the user to enter a security code
 0 to 65,000
SOFTWARE MENU DESCRIPTION

TX SETUP

Gain:
Sensitivity range of sonar transducer.
Factory set for applications.
Range: 0.0% to 95.0%

Gain Step:
Fixed gain level near sonar transducer face.
Factory set for each transducer frequency.
Range: 0.0% to 80%

Distance Step:
The distance out from the transducer face where the fixed low gain (gain step) applies. Generally used to reduce a mechanical mounting reflection near the transducer
Range: 0.350mm to >10.0m
Factory set for each transducer frequency.

Threshold:
Factory set for selected applications. The sizes of the signal in volts, that instrument will accept as validated.
Check with your distributor or the factory before changing.
Range: 0.00v to 2.49v

Blanking:
Distance from transducer face, where the software is prevented from measuring.
Range: 0.000mm to >10.0m

Empty Distance:
A distance longer than low level, the software prevents measurements from past this distance.
Note: Conical shaped vessels need longer empty distances.
Range: 0.600 to 65.0m

Note:
To increase the range capability of the transmitter, increase the empty distance to a greater distance than required for the application.

Continued next page
Continued from previous page

Temperature Trim:
The sonar transducer has an inbuilt temperature compensator. This parameter allows the inbuilt temperatures sensor to be calibrated.
Range: -50.0ºc to 160.0ºc. Factory calibrated.

Distance Trim:
Allows for fine calibration of the measuring distance.
Only when required. Factory calibrated.

Velocity:
Allows for a change in the speed of sound.
Factory calibrated consult your distributor or factory.

E Width 1:
Factory calibrated consult your distributor or factory.

Application 2 #
(only used with Dual Analogue Orca Transmitter)

Gain 2:
Sensitivity range of sonar transducer factory set for applications.
Range: 0.0% to 95.0%

Threshold 2:
Factory set for selected applications the size of the signal in volts, that the instrument will accept as validated.
Check with your distributor or factory before changing.
Range: 0.00v to 2.49v

E Width 2:
Factory calibrated.
Consult your distributor or factory.

FLOC MARG
SOFTWARE MENU DESCRIPTION

OUTPUT ADJUST

Fill Damping (tank filling):
The number of pulses that the analogue output is averaged over.
eg: 60 = 60 pulses = 1 minute. Analogue output changes, by the average change in this time period.

Empty Damping (tank emptying):
The number of pulses that the analogue output is averaged over.
eg: 120 = 120 pulses = 2 minutes. Analogue output changes by the average change in this time period.

4mA Adjust:
Trim 4mA Output

20mA Adjust:
Trim 20mA Output

Analog
4mA - 20mA
Invert Output
20mA - 4mA

Simulate:
Drive the output and display using up/down push buttons.

4mA Adjust 2

20mA Adj 2

Comm Type:
Modbus (factory default)
Options: Hart, Profibus.

Continued next page
SOFTWARE MENU DESCRIPTION

Continued from previous page

Relay Mode 1:
- EN Energise
Options:
- FS Failsafe
- Off Out of service
- DEN De-energised

Relay L1 (1) turn on: 0.800m
Relay L2 (1) turn off: 0.900m
Relay setpoints 0.00m to 65.0m

Relay Mode 2:
- EN Energise
Options:
- FS Failsafe
- Off Out of service
- DEN De-energised

Relay L1 (2) turn on: 1.000m
Relay L2 (2) turn off: 1.100m

Relay Mode 3:
- EN Energised
Options:
- FS Failsafe
- Off Out of service
- DEN De-energised

Relay L1 (3): 1.200m
Relay L2 (3): 1.300m

Cleaning:
- Off
Options: Actuator
Actuator max. position 80.4mm (max. movement of actuator)
Actuator min. position 53.6mm (return position of actuator)

Range: Factory adjusted
Contact distributor or factory
No maintenance requirement.
Max 5yrs operation, 1 operation/hr

Cycle:
Actuator operation time (cycle)
Suggested: 120 min between cleans
Range: 5 minutes to >10 hrs
ENTERING DATA

SOFTWARE TREE

To Calibrate

RAS
0.850m
Run Display
Example application – RAS Blanket.
Depth of RAS Blanket – 0.850m

Press CAL

UNLOCK 0
On start up there is no security code protection.

Press CAL

QUICKSET
Quickset
Menu covers all basic parameters plus application choices.

Press

TX SETUP
Transducer Setup
Used only in very special applications, consult distributor or factory.

Press

OUTPUT AD
Output Adjust
Change output functions.

Press

Run Mode
ENTERING DATA

DIAGNOSTIC DISPLAYS

The diagnostic displays appear on the top line of the display, after pressing the push button when the sonar transmitter is in the operations mode. The diagnostics provide the user with valuable performance feedback on how the sonar is performing, whilst in operation mode.

Example:

<table>
<thead>
<tr>
<th>Run Mode Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS (application)</td>
<td>RAS Bed Level</td>
</tr>
<tr>
<td>E: 3.220 (in metres)</td>
<td>Instant echo distance per each pulse based on application set-up parameters. Measurement from sonar transducer.</td>
</tr>
<tr>
<td>S: 2.05v</td>
<td>This is the amplitude of the signal return in volts, from the interface.</td>
</tr>
<tr>
<td>G: 42.0%</td>
<td>Gain sensitivity at the distance the signal is detected.</td>
</tr>
<tr>
<td>R: 1.1%</td>
<td>The amount of recover gain if the signal drops below threshold detection level.</td>
</tr>
</tbody>
</table>

Continued next page
ENTERING DATA

Continued from previous page

<table>
<thead>
<tr>
<th>N: 1.9% 0.850m</th>
<th>N: Background noise level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press</td>
<td></td>
</tr>
<tr>
<td>T: 24.2C 0.850m</td>
<td>T: Liquid temperatures at sonar transducer</td>
</tr>
<tr>
<td>Press</td>
<td></td>
</tr>
<tr>
<td>W↑: 3.070 0.850m</td>
<td>W↑: start of window tracking position, in metres from sonar transducer</td>
</tr>
<tr>
<td>Press</td>
<td></td>
</tr>
<tr>
<td>W↓: 4.270 0.850m</td>
<td>W↓: end of window tracking position</td>
</tr>
<tr>
<td>Press</td>
<td></td>
</tr>
<tr>
<td>NORMAL 0.850m</td>
<td>NORMAL = Normal operation if echo received above threshold</td>
</tr>
<tr>
<td></td>
<td>RECOVER = Echo below threshold increasing gain.</td>
</tr>
<tr>
<td></td>
<td>FAILED = No echo received. possible failed transducer or cable problem.</td>
</tr>
<tr>
<td>Press</td>
<td></td>
</tr>
<tr>
<td>RAS 0.850m</td>
<td>Return to application display</td>
</tr>
<tr>
<td></td>
<td>RAS Bed Level</td>
</tr>
</tbody>
</table>

RAS Bed Level
START UP - COMMISSIONING

After making sure that the sonar is installed correctly, turn the power on to calibrate and commission the instrument. The ORCA Sonar has been designed to work on a number of different applications, that require variations to the set-up. To simplify the set-up we have developed an ‘Application Menu’.

The ‘Application Menu’ covers the most commonly seen sonar applications. The ORCA sonar can be calibrated to handle many other sonar interface applications up to a range of 60 metres.

Please see the following application examples.

Analogue Output No. 1 (output 1)

1. RAS (return activated sludge) blanket
2. Floc (floc/rag layer) (floc polyelectrolyte blanket)
3. Bed level (primary sedimentation tank) (thickener/ccd’s)

Analogue Output No. 2 (output 2)

4. RAS (return activated sludge) blanket
5. Floc (floc/rag layer) (floc polyelectrolyte blanket)
6. Bed level (primary sedimentation tank) (thickener/ccd’s)
7. Clarity (suspended solids monitoring)

If your application for the sonar does not appear in the list, contact your distributor or the factory.

Note: Some ‘RAS Blanket’, ‘Bed Level’ and ‘Floc Interface’ applications, experience high fluctuation, caused by hydraulic imbalance inflow characteristics. It can vary in alternative tanks at the same site.

To verify the sonar is measuring the correct density interface, use a portable turbidity analyzer or a sludge judge clear pipe.

Using the portable turbidity analyzer and holding it at a fixed depth, will indicate how much the interface is fluctuating in height.

Remember, the RAS Blanket, or Bed of a thickener is never flat.

The heavier the density, the more stable the measurement.

Consult your distributor or factory for more support.
APPLICATION 1:
RAS Blanket (Secondary/Final Clarifier)
(a) (Sewage treatment and waste water treatment plants)
(Select application: RAS select density level to track)
(Programming)

Secondary Clarifier RAS Floc Calibration

<table>
<thead>
<tr>
<th>Info</th>
<th>Factory</th>
<th>Track</th>
<th>Tx Setup</th>
<th>Quick Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial No: 11320</td>
<td>Slope Dst: 0.125</td>
<td>Recovery First(%): 0.0</td>
<td>Gain(%): 4.9</td>
<td>Low Level (m): 5.34</td>
</tr>
<tr>
<td>Type: 00</td>
<td>Slope inc(%): 0.7</td>
<td>Recovery Max(%): 2.0</td>
<td>Gain Stop 3(m): 10.9</td>
<td>Hi Level (m): 4.94</td>
</tr>
<tr>
<td>SoftVer: 3.92</td>
<td>Detector: 0.403</td>
<td>Recovery Inc (%): 0.5</td>
<td>Dist Stop 3(m): 0.66</td>
<td>Application: RAS</td>
</tr>
<tr>
<td>ModbusID: 02</td>
<td>Gain STEP1(%): 4.7</td>
<td>Window: 1.000</td>
<td>Threshold: 1.70</td>
<td>Rate of Fill: 1.0</td>
</tr>
<tr>
<td>Tx Serial No: 10756</td>
<td>Dist Step1 (m): 0.250</td>
<td>Win Fwd (m): 0.003</td>
<td>Sloping (m): 0.350</td>
<td>Dampr Fill: 240</td>
</tr>
<tr>
<td>Tx Model No: 50</td>
<td>Gain Step 2 (%): 100</td>
<td>Window: 0.001</td>
<td>Empty Dist (m): 6.300</td>
<td>Rate of Empty: 1.0</td>
</tr>
<tr>
<td>Tx SoftVer: 4.65</td>
<td>Dist Step 2 (m): 0.350</td>
<td>Confirm: 2</td>
<td>Temp Adj: 3.00</td>
<td>Dampr Empty: 240</td>
</tr>
<tr>
<td>Tx Modbus ID: 01</td>
<td>Gain Max (%): 98.0</td>
<td>Hold: 40</td>
<td>Dist Ad (m): 0.025</td>
<td>Failsafe: 4.00mA</td>
</tr>
<tr>
<td>Company: Hawk</td>
<td>Pulsed 2: 16</td>
<td>Tx Voltage: 0.000</td>
<td>Velicity: 1.000</td>
<td>Fail Safe Time: 100</td>
</tr>
<tr>
<td></td>
<td>Pulse Rate: 3000</td>
<td>Noise SNR (%): 98.7</td>
<td>Map Dist (m): 0.000</td>
<td>Lock Code: 0</td>
</tr>
<tr>
<td></td>
<td>Frequency: 3000</td>
<td>Echo Width (m): 0.000</td>
<td>Map Use (m): 0.400</td>
<td>Low Level 2 (m): 5.32</td>
</tr>
<tr>
<td></td>
<td>Filter (%): 33</td>
<td>Search First (%): 6.9</td>
<td>Map Margin (%): 0.1</td>
<td>Hi Level 2 (m): 0.30</td>
</tr>
<tr>
<td></td>
<td>I-Waste: 0.500</td>
<td>Movement (m): 0.020</td>
<td>Gain 2(%): 14.9</td>
<td>Application 2: FLOC</td>
</tr>
<tr>
<td></td>
<td>Ads Filter: 32</td>
<td>No of Echo: 20</td>
<td>Threshold 2: 0.60</td>
<td>Density 2: 1.230</td>
</tr>
<tr>
<td></td>
<td>I-Charge: 100</td>
<td>Echo Width 2 (m): 0.300</td>
<td>Floc Margin (%): 0.400</td>
<td>Sn (Ratios): 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tx Output Type 2: 1</td>
<td>Damping 2: 319</td>
<td></td>
</tr>
</tbody>
</table>
Example Setup

Start by pressing the CAL button:

1. Unlock
2. Quickset
3. Units of measurement
4. Application type
5. Density range

Units of measurement:
- Choice: metres, centimetres, feet, inches

Application Type:
- RAS
- Bed
- Floc

Density range: 0.1 to 10.0 g/l

Press CAL twice to continue:

Press CAL for Continued next page
START UP - COMMISSIONING

Density 3.0 - 6.0 G/L
Typical RAS Density
2.5 G/L to 4.0 G/L

Press CAL

Calibrate 9.9%
Fine adjust calibrate of density setting.
Range: 0.0% to 26.7%

Press CAL

(Example)

Calibrate 8.0%
Reduce number to 8.0%
(Decrease number heavier density)
(Increase number lighter density)

Press CAL

Display reads

Size of return echo

Display resumes

Calibrate 1.5V
Then

Calibrate 3.50M
Distance where interface was detected.

Press CAL

Calibrate 8.0%

Press CAL

Calibrate 2.2V
Then

Correct RAS blanket level

Calibrate 4.00M

Continued next page
START UP - COMMISSIONING

Continued from previous page

Press **RUN**

Low Level: 4mA (0%)

Press **CAL** Low Level Edit

LOW LEVEL

10.00m

Press **CAL** Low Level Edit

LOW LEVEL

6.50m

High Level: 20mA (100%)

Press **CAL** Hi Level Edit

Press **CAL**

HIGH LEVEL

0.50m

Adjust for maximum speed that the interface can move.

Press **CAL** Hi Level Edit

Press **CAL**

FILL RATE

1.0m/H

Monitors Tank Filling

Press **CAL**

Press **CAL**

Range: 0.1m/H to >10.0m/H

Adjust for maximum speed that the interface can move.

Press **CAL** Hi Level Edit

Press **CAL**

EMPTY RATE

1.0m/H

Monitors Tank Emptying

Press **CAL**

Press **CAL**

Range: 0.1m/H to >10.0m/H

Continued next page
START UP - COMMISSIONING

Continued from previous page

Choose a failsafe condition.

FAILSAFE
20.00mA

Press [CAL]

Press [CAL]

Press [CAL]

FAIL TIME
3.0min

Press [CAL]

Press [CAL]

Press [CAL]

The time, after a fault has occurred before failed output condition.

DISPLAY MODE
LEVEL

Press [CAL]

Press [CAL]

Press [CAL]

Display reading distance, bottom of tank up, or top of tank down.

OFFSET
0.000m

Press [CAL]

Press [CAL]

Press [CAL]

Allows start position level to be altered.

LOCK CODE
0

Press [CAL]

Press [CAL]

Press [RUN]

Security Code

Zero code, no security.

Press [CAL]

Press [CAL]

Press [CAL]

Range: 0 to 65,000

Press and hold until transmitter starts measuring.

Press

Edit

Press

Press

Range: 0.0 min to >10.0 min

Press

20.00ma

4.00ma

Choices: last known

20.20ma

3.80ma

3.50ma

Choice: Space

Level

% Level

Range: 0.000m to 5.0m

Press
APPLICATION 2:
Flock/RAG Layer
(Water treatment plants - Floc Blanket)
(Sewage treatment and waste water treatment plants - Secondary/Final Clarifiers - Floc/RAG Layer)

Clarifier Floc Level Calibration

<table>
<thead>
<tr>
<th>Info</th>
<th>Quick Start</th>
<th>Factory</th>
<th>Track</th>
<th>Tx Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial No.</td>
<td>12300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SoftVer</td>
<td>5.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ModbusID</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx Serial No.</td>
<td>14155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx Model No.</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx Port</td>
<td>4.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx ModbusID</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>Have</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat Set Time</td>
<td>180</td>
<td>PulsePur</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Lock Code</td>
<td>0</td>
<td>PulseRate</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Disp Mode</td>
<td>Level</td>
<td>Frequency</td>
<td>3594</td>
<td></td>
</tr>
<tr>
<td>Low Level 2(m)</td>
<td>0.500</td>
<td>Filter</td>
<td>33</td>
<td>Echo Width</td>
</tr>
<tr>
<td>Hi Level 2(m)</td>
<td>0.500</td>
<td>I-Wate</td>
<td>0.000</td>
<td>Echo Width</td>
</tr>
<tr>
<td>Application 2</td>
<td>Clarity</td>
<td>AdvFilter</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Density 1</td>
<td>0.1-0.5g</td>
<td>I-Charge(mA)</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Density 2</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CabCont(%)</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CabCont 2(%)</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SampRate(min)</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter 2</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

START UP - COMMISSIONING
START UP - COMMISSIONING

Example Setup

Press \[\text{CAL} \]

UNLOCK

Press \[\text{CAL} \]

QUICKSET

Press \[\text{CAL} \]

UNIT METRES

Press \[\downarrow \]

APP TYPE RAS

Press \[\downarrow \]

APP TYPE FLOC

Application Type: RAS
Bed Floc

Press \[\text{CAL} \]

Continued next page
START UP - COMMISSIONING

Continued from previous page

DENSITY 1.2 - 3.0 G/L
Press CAL

DENSITY 0.1 - 0.6 G/L
Press CAL

CALIBRATE 8.0%
Press CAL

Display reads
Size of return echo
Display resumes

CALIBRATE 0.5V
Then
CALIBRATE 2.60m
Distance where interface was detected.

CALIBRATE 8.0%

(Example)

CALIBRATE 14.0%
Press CAL

Density Range: 0.1 to 10.0G/L
Press Density Edit Press

Fine adjust calibrate of density setting.
Range: 0.0% to 26.7%

Continued next page
START UP - COMMISSIONING

Continued from previous page

Display reads

CALIBRATE 2.2V
Press CAL
Then

CALIBRATE 2.00M
Distance where Floc interface is detected.

Display resumes

Increased echo size on top of Floc Blanket

CALIBRATE 14.0%
Press RUN

Low Level: 4mA (0%)

LOW LEVEL 10.00m
Press CAL Low Level Edit

Range: 100mm to 60.0m
Press

LOW LEVEL 6.50m
Press CAL

High Level: 20mA (100%)

HIGH LEVEL 0.50m
Press CAL Hi Level Edit
Press

Range: 0.0 to 59.9m
Press

Adjust for maximum speed that the interface can move.

FILL RATE 1.0m/H
Press CAL Edit Fill Rate
Press

Monitors Tank Filling
Press

Range: 0.1m/H to >10.0m/H
Press

Continued next page
START UP - COMMISSIONING

Continued from previous page

Adjust for maximum speed that the interface can move.

EMPTY RATE 1.0m/H

- Press **CAL** to Edit Empty Rate
- Press **CAL**

FAILSAFE 20.00mA

- Press **CAL**
- Press **CAL**

FAIL TIME 3.0min

- Press **CAL**
- Press **CAL**

DISPLAY MODE LEVEL

- Press **CAL**
- Press **CAL**

OFFSET 0.000m

- Press **CAL**
- Press **CAL**

Monitors Tank Emptying

- Press **CAL**
- Range: 0.1m/H to >10.0m/H

Choose a failsafe condition.

20.00mA

- Press **CAL**

4.00mA

- Press **CAL**

Choices:

- Last Known
- 20.20mA
- 3.80mA
- 3.50mA

The time, after a fault has occurred before failed output condition.

- Press **CAL**
- Range: 0.0 min to >10.0 min

Display reading distance, bottom of tank up, or top of tank down.

- Press **CAL**

- Press **CAL**

- Press **CAL**

Allows start position level to be altered.

- Press **CAL**
- Press **CAL**

Continued next page
START UP - COMMISSIONING

Continued from previous page

Security Code

LOCK CODE 0

Zero code, no security.

- Press **CAL**
- Press **RUN**

Press and hold until transmitter starts measuring.

Note: Some ‘RAS Blanket’, ‘Bed Level’ and ‘Floc Interface’ applications, experience high fluctuation, caused by hydraulic imbalance inflow characteristics. It can vary in alternative tanks at the same site.

To verify the sonar is measuring the correct density interface, use a portable turbidity analyzer or a sludge judge clear pipe.

Using the portable turbidity analyzer and holding it at a fixed depth, will indicate how much the interface is fluctuating in height.

Remember, the RAS Blanket, or Bed of a thickener is never flat.

The heavier the density, the more stable the measurement.

Consult your distributor or factory for more support.
START UP - COMMISSIONING

APPLICATION 3:
Bed Level (thickener) *Sonar Transducer: 3 crystal and 7 crystal types
(a) (Sewage treatment and waste water treatment plants - thickeners)
(b) (Mining - thickeners, CCD’s)
(c) (Food - thickeners, carbon columns)

Thickener Bed Level Calibration

<table>
<thead>
<tr>
<th>Info</th>
<th>Quick Start</th>
<th>Factory</th>
<th>Track</th>
<th>Tx Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial No</td>
<td>Low Level(m): 10.000</td>
<td>Slope Dist(m): 0.100</td>
<td>Recover First(%): 0.0</td>
<td>Gain(%): 10.0</td>
</tr>
<tr>
<td>Type</td>
<td>Hi Level(m): 0.500</td>
<td>Slope Inc(%): 0.7</td>
<td>Recover Max(%): 40.0</td>
<td>Gain Step 3(%): 8.0</td>
</tr>
<tr>
<td>SoftVer</td>
<td>Detector: 0.403</td>
<td>GainStep (%): 1.1</td>
<td>Dist Step 3(m): 0.600</td>
<td>Dist Step 2(m): 0.300</td>
</tr>
<tr>
<td>ModbusID</td>
<td>GainStep2(%): 5.1</td>
<td>Window(m): 1.000</td>
<td>Window(m): 3.000</td>
<td>Threshold: 0.63</td>
</tr>
<tr>
<td>Tx Serial No</td>
<td>Dist Step1(m): 0.350</td>
<td>Wm Fwd(m): 3.001</td>
<td>Blanking(m): 0.350</td>
<td>Temp Adj: 3360</td>
</tr>
<tr>
<td>Tx Model No</td>
<td>Dist Step2(m): 0.500</td>
<td>Wm Bwd(m): 0.010</td>
<td>EmptyDist(m): 20.000</td>
<td>Temp Adj: 3360</td>
</tr>
<tr>
<td>Tx ModbusID</td>
<td>Rate of Empty: 1.0</td>
<td>Confirm: 2</td>
<td>Tx Adj(m): 0.025</td>
<td>Dist Adj(m): 0.050</td>
</tr>
<tr>
<td>Company</td>
<td>Failsafe: 20.00mA</td>
<td>Hold: 600</td>
<td>Hold: 600</td>
<td>Velocity: 1.0000</td>
</tr>
<tr>
<td>Fail Safe Time: 180</td>
<td>PulseFreq: 16</td>
<td>T x Voltage: 5.000</td>
<td>T x Voltage: 5.000</td>
<td>PulseRate: 3000</td>
</tr>
<tr>
<td>Disp Mode</td>
<td>Noisw Sw]%: 98.7</td>
<td>Frequency: 3210</td>
<td>Noisw Sw]%: 98.7</td>
<td>Frequency: 3210</td>
</tr>
<tr>
<td>Low Level 2(m): 10.000</td>
<td>Search First(%): 2.0</td>
<td>Echo Width(m): 0.200</td>
<td>Search First(%): 2.0</td>
<td>Echo Width(m): 0.200</td>
</tr>
<tr>
<td>Hi Level 2(m): 0.500</td>
<td>Echo Width(m): 0.100</td>
<td>No of Echo: 10</td>
<td>Echo Width(m): 0.100</td>
<td>No of Echo: 10</td>
</tr>
<tr>
<td>Application</td>
<td>I-Waste: 0.500</td>
<td>F1osMargin(m): 0.300</td>
<td>F1osMargin(m): 0.300</td>
<td>F1osMargin(m): 0.300</td>
</tr>
<tr>
<td>Density 1: 10+ gram</td>
<td>Movement(m): 0.020</td>
<td>TxOutputType2: 0</td>
<td>TxOutputType2: 0</td>
<td>TxOutputType2: 0</td>
</tr>
<tr>
<td>Density 2: 0.1-1.6g</td>
<td>I-Charge(mA): 10.0</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
</tr>
<tr>
<td>Calibrat (%): 2.0</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
</tr>
<tr>
<td>Calibrat %: 4.9</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
</tr>
<tr>
<td>SmpRate(min): 30</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
</tr>
<tr>
<td>Damping 2: 300</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
<td>00m Sonar</td>
</tr>
</tbody>
</table>
START UP - COMMISSIONING

Example Setup

Press CAL

UNLOCK

Press CAL

QUICKSET

Press CAL

UNIT METRES

Press CAL

APP TYPE RAS

Press CAL

APP TYPE BED

Continued next page
START UP - COMMISSIONING

Continued from previous page

DENSITY 3.0 - 6.0 G/L
Press **CAL**

Density Range: 0.1 to 10.0G/L
Press **Density Edit**

DENSITY 6.0 - 10 G/L
Press **CAL**

CALIBRATE 10.1%
Press **CAL**

Fine adjust calibrate of density setting.
Range: 0.0% to 26.7%

Display reads
Size of return echo

Display resumes

(Example)

CALIBRATE 8.0%
Press **CAL**

Distance where interface was detected. *(Needs to read lower)*

Then

CALIBRATE 3.50m

Continued next page
START UP - COMMISSIONING

Continued from previous page

Display reads

CALIBRATE 2.0V

Press **RUN**

Then **CALIBRATE 4.50m**

Now distance where interface bed level detected.

LOW LEVEL 10.00m

Press **CAL**

LOW LEVEL 6.50m

Press **CAL**

HIGH LEVEL 0.50m

Press **CAL**

Press **CAL**

FILL RATE 1.0m/H

Press **CAL**

Press **CAL**

Range: 0.0 to 59.9m

Range: 100mm to 60.0m

Range: 0.1m/H to >10.0m/H

Adjust for maximum speed that the interface can move.

Increased return echo (good signal)

Low Level: 4mA (0%)

High Level: 20mA (100%)
START UP - COMMISSIONING

EMPTY RATE 1.0m/H

- Adjust for maximum speed that the interface can move.
- Press [CAL] Edit Empty Rate

Failsafe 20.00mA

- Choose a failsafe condition.
- Press [CAL]

Fail Time 3.0min

- The time, after a fault has occurred before failed output condition.
- Press [CAL]

Display Mode Level

- Display reading distance, bottom of tank up, or top of tank down.
- Press [CAL]

Offset 0.000m

- Allows start position level to be altered.
- Press [CAL]
START UP - COMMISSIONING

Continued from previous page

Security Code

LOCK CODE

0

Zero code, no security.

Press

CAL

Edit

Range: 0 to 65,000

Press

RUN

Press and hold until transmitter starts measuring.

Note: Some ‘RAS Blanket’, ‘Bed Level’ and ‘Floc Interface’ applications, experience high fluctuation, caused by hydraulic imbalance inflow characteristics. It can vary in alternative tanks at the same site.

To verify the sonar is measuring the correct density interface, use a portable turbidity analyzer or a sludge judge clear pipe.

Using the portable turbidity analyzer and holding it at a fixed depth, will indicate how much the interface is fluctuating in height.

Remember, the RAS Blanket, or Bed of a thickener is never flat.

The heavier the density, the more stable the measurement.

Consult your distributor or factory for more support.
APPLICATION 4:
Primary Sludge Blanket (Primary Sedimentation Tank)
(a) (Sewage treatment plant and waste water treatment plans)
(b) (Paper and industrial waste treatment plants)

Primary Sedimentation Bed Level Calibration

<table>
<thead>
<tr>
<th>Info</th>
<th>Quick Start</th>
<th>Factory</th>
<th>Track</th>
<th>Tx Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial No</td>
<td>123456</td>
<td>6500</td>
<td>0.100</td>
<td>0.0</td>
</tr>
<tr>
<td>Type</td>
<td>00</td>
<td>0.500</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Software</td>
<td>6.46</td>
<td>0.403</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Modbus D</td>
<td>01</td>
<td>0.300</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tx Serial No</td>
<td>18141</td>
<td>1.100</td>
<td>1.000</td>
<td>0.60</td>
</tr>
<tr>
<td>Tx Model No</td>
<td>100</td>
<td>0.380</td>
<td>0.010</td>
<td>0.00</td>
</tr>
<tr>
<td>Tx SubVer</td>
<td>4.76</td>
<td>2</td>
<td>3350</td>
<td>0.00</td>
</tr>
<tr>
<td>Tx Modbus D</td>
<td>01</td>
<td>200.000</td>
<td>0.050</td>
<td>2</td>
</tr>
<tr>
<td>Company</td>
<td>Hawk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fail Safe Time</td>
<td>100</td>
<td>PulseVa</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>Lock Code</td>
<td>0</td>
<td>3000</td>
<td>Noise SW</td>
<td>100.00</td>
</tr>
<tr>
<td>Disc Mode</td>
<td>Level</td>
<td>3210</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Low Level 2(m)</td>
<td>10.000</td>
<td>Filter</td>
<td>5.1</td>
<td>0.00</td>
</tr>
<tr>
<td>Hi Level 2(m)</td>
<td>0.000</td>
<td>I-Wafer</td>
<td></td>
<td>0.0000</td>
</tr>
<tr>
<td>Application 2</td>
<td>Clarity</td>
<td>50</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Density 1(m-gram)</td>
<td>10.00</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Density 2</td>
<td>0.1-0.8p</td>
<td>Gain Sonar</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Carbon 3%</td>
<td>5.1</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Carbon 2%</td>
<td>4.9</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Separation(min)</td>
<td>3.0</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Damping 2</td>
<td>300</td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>
START UP - COMMISSIONING

Example Setup

Press CAL

UNLOCK 0

Press CAL

QUICKSET

Press CAL

UNIT METRES

Press

APP TYPE RAS

Press CAL

APP TYPE BED

Press CAL

Continued next page

Menu heading

Units of measurement

Metres Choice: Centimetres
Feet Feet
Inches

Application Type: RAS
Bed
Floc

Bed Level

Press

Press

Press
Continued from previous page

DENSITY 3.0 - 6.0 G/L
Density Range: 0.1 to 10.0G/L
Press \[\text{CAL} \]

CALIBRATE 10.1%
Fine adjust calibrate of density setting. Range: 0.0% to 26.7%
Press \[\text{CAL} \]

CALIBRATE 2.0V
Distance where Sludge Blanket was detected.
Then
CALIBRATE 4.20m

Size of return echo of Sludge Blanket

Display resumes

CALIBRATE 10.1%
Use \[\text{ } \] to decrease density.
Use \[\text{ } \] to increase density.
Then press \[\text{CAL} \] to check.
New bed level position.
Press \[\text{RUN} \]

LOW LEVEL 10.00m
Press \[\text{CAL} \] Low Level Edit
Range: 100mm to 60.0m

LOW LEVEL 6.50m
Press \[\text{CAL} \]
START UP - COMMISSIONING

Continued from previous page

High Level: 20ma (100%)

HIGH LEVEL
0.50m

Press CAL

Press CAL

Hi Level Edit

Range 0.0 to 59.9m

Press

Adjust for maximum speed that the interface can move.

FILL RATE
1.0m/H

Press CAL

Press CAL

Edit Fill Rate

Range: 0.1m/H to >10.0m/H

Press

Adjust for maximum speed that the interface can move.

EMPTY RATE
1.0m/H

Press CAL

Press CAL

Edit Empty Rate

Range: 0.1m/H to >10.0m/H

Press

Choose a failsafe condition.

FAILSAFE
20.00mA

Press CAL

Press CAL

Edit

Choices:

20.00mA
4.00mA
Last Known
20.20mA
3.80mA
3.50mA

Press

The time, after a fault has occurred before failed output condition.

FAIL TIME
3.0min

Press CAL

Press CAL

Edit

Range: 0.0 min to >10.0 min

Press

Continued next page
START UP - COMMISSIONING

Continued from previous page

Display reading distance, bottom of tank up, or top of tank down.

DISPLAY MODE LEVEL

Press \[\text{CAL}\] \(\uparrow\downarrow\) Press \[\text{CAL}\]

Choice: Space
Level % Level

Press \[\uparrow\downarrow\] Press \[\uparrow\downarrow\]

Allows start position level to be altered.

OFFSET 0.000m

Press \[\text{CAL}\] \(\uparrow\downarrow\) Press \[\text{CAL}\]

Range: 0.000m to 5.0m

Press \[\uparrow\downarrow\]

Security Code

LOCK CODE 0

Press \[\text{CAL}\] \(\uparrow\downarrow\) Press \[\text{RUN}\]

Range: 0 to 65,000

Press \[\uparrow\downarrow\]

Press and hold until transmitter starts measuring.

Note: Some ‘RAS Blanket’, ‘Bed Level’ and ‘Floc Interface’ applications, experience high fluctuation, caused by hydraulic imbalance inflow characteristics. It can vary in alternative tanks at the same site.

To verify the sonar is measuring the correct density interface, use a portable turbidity analyzer or a sludge judge clear pipe.

Using the portable turbidity analyzer and holding it at a fixed depth, will indicate how much the interface is fluctuating in height.

Remember, the RAS Blanket, or Bed of a thickener is never flat.

The heavier the density, the more stable the measurement.

Consult your distributor or factory for more support.
COMMUNICATION - MULTIDROP CONNECTION

GSM or CDMA Network

- Typically up to 31 transmitters or switches per string.
- Maximum 250 transmitters or switches.
- Using GSM/CDMA network, transmitters and switches can be monitored, calibrated remotely.
- Alarm status, diagnostics can be monitored.
- Support from factory engineering for customer application problems.

(Limited Modbus query rate for Switches only)
COMMUNICATION - REMOTE

GSM/CDMA Communication
HawkLink GSM/CDMA communication device allows any authorized computer with a standard modem and GosHawk software to dial in and calibrate, test or check on the performance of the connected Hawk product. The HawkLink device can be wired to the standard communication terminals of the Hawk products.

Remote technical support and complete commissioning of equipment in applications via our GSM/CDMA module allows monitoring and adjustments of settings no matter what corner of the world.

Protocols
- GosHawk
- HART
- Modbus
- Profibus DP
- Profibus PA
- Foundation Fieldbus
- DeviceNet

Remote connection worldwide!
ERROR CODES

ERROR CODE 01 - 04

Error 01: Amplifier can not talk to transducer.

Error 02: Amplifier can talk to transducer but transducer gives incorrect response.

Error 03: ProFlBus or DeviceNet is selected but ProFlBus or DeviceNet module is not connected or responding.

Error 04: Amplifier is programmed with incorrect software.

In general Error Code 01 indicates there is NO communication and Error Code 02 says there IS communication, but not of sufficient quality to be read reliably.

ERROR CODES

Error 01 Information

If Error 01 exists, then the amplifier can not communicate with the transducer, so it is impossible for it to display the address for you (the display cycle for Error 01 does not show any transducer information).

To find the transducer address you must connect directly to the transducer wires, then you will need to use the ‘ID Search- Tx ID Search’ function of GosHawkII, or the Modscan program and Txfind utility. The BLUE and WHITE transducer communication wires and a Ground connection must be connected to your PC via the RS485 converter. The PC then communicates directly with the transducer, not via the amplifier. The RED and BLACK transducer wires must remain connected to the amplifier terminals. These supply the correct power to the transducer.

The amplifier should be powered ON as normal, then press CAL until the display stops scrolling through the diagnostic messages. Start GosHawkII and use the ‘ID Search- Tx ID Search’ function. The transducer serial number will appear next to the ID number to which it is currently set. The same thing will occur if you use the Modscan program and Txfind utility.

Record the ID number found, power off, and reconnect the transducer BLUE and WHITE wires to the amplifier terminals, and connect the RS485 converter to the ‘A’ and ‘B’ Modbus terminals as normal.

Error 02 Information

Error 02 indicates a communication data corruption between AWA and Transducer. It can be a result of noise in data lines or one of data lines (“A” or “B”) being open circuit.

1. Make sure wiring is correct especially look to the screen (earth).

2. If it still doesn’t work, you should then disconnect the Transducer from AWA and check modbus ID’s of both AWA and Tx through GosHawkII “ID Search”. If the ID numbers don’t match, write down Transducer ID number and then connect AWA to GosHawkII and change it’s Modbus ID to recorded value through “Info Screen” window.

3. If the Transducer can’t communicate with GosHawkII send it back to Factory for replacement.
TROUBLESHOOTING

Testing the 4-20mA OUTPUT

1. Disconnect all wire out of the 4-20mA.
2. Connect the mA meters Red lead (+) of the 4-20mA IS terminal.
3. Connect the Black lead (-) to the 4-20mA + terminal.
4. Select the OUTPUT ADJ parameter
5. Select 4mA Adj and press CAL.
6. If you don’t see any mA output, go to step13.
7. Use should now see 4mA on the multimeter.
8. Adjust the 4mA by pressing up or down.
 Press enter to store and move to the next parameter.
9. Press CAL to edit the 20mA.
10. Use should now see 20mA on the multimeter.
11. Adjust the 20mA by pressing up or down. Press enter to store and move.
12. Current output is OK
13. Test your current meter to confirm it works and the fuse is OK.
14. Test the IS (Isolated voltage output). You will need a Volt meter.
 Set the meter to DC.
15. Connect the Volt meter + to the IS terminal.
16. Connect the Volt meter – to the 4-20mA – terminal.
17. You should have a Voltage reading >14V DC.
18. If you do not have this then check the Analogue SMART card is inserted correctly.
 Remove the card and insert it again.
19. Make sure the card is in 3/4 wire mode.
TROUBLESHOOTING

ORCA 24 Volt DC Electric Actuator Troubleshooting

The ORCA Sonar system is often used with an electric linear actuator, powered and controlled by internal electronics in the standard amplifier. This section describes several tests which can be made on the complete system, and on the individual parts, to try to identify the cause of a problem where a unit seems not to be operating correctly.

The ORCA amplifier and actuator components are highly reliable, so the first steps will be to verify that the mechanical assembly, wiring and basic software settings are correct for 24VDC actuator cleaning operation.

Mechanical Checks:
- Ensure that the actuator, bracket, transducer mounting pipe and hinged clamps are assembled as per the diagram on pages 48-55 of the ORCA manual.

- Ensure that the pinch bolts which secure the hinged clamps to the transducer mounting pipe are firmly tightened. If one of these bolts is loose, then the actuator may operate, but the sensor and pipe may not move their full stroke, may not move at all, or may not return to the correct home (vertical) position.

- Ensure that the hinges are free moving. Correctly assembled hinges should move very freely before the transducer mounting pipe is inserted. Any tightness or binding indicates mis-assembled parts, or damaged parts and should be repaired or replaced.

- Ensure that the actuator being used is an original ORCA part or Hawk approved replacement part for an ORCA system. ORCA components are carefully selected for performance characteristics. A non standard actuator may not operate correctly with the ORCA driving electronics, and will void any warranty claim on other ORCA components within the system.

- The actuator should not be operated electrically before the mechanical assembly is completed. It is possible that the moving piston of the actuator could rotate during operation instead of purely moving in and out if operation is allowed when not correctly installed in the bracket and hinge assembly. Do not rotate the piston of the actuator by hand before installation. The actuator will be supplied with the piston either taped or tied in the correct orientation, and it should be installed in the same position (with the mounting holes running parallel to one another and not rotated by more than ½ turn from the position as supplied. The calibration of the position sensing part of the actuator may be lost if the piston is rotated by more than ½ turn in either direction, either by hand, or under power (if it is allowed to operate before fully mechanically assembled). A procedure for re-setting the correct calibration of the position sensor in the actuator is given at the end of this section.

Wiring Checks:
- Ensure that the actuator and amplifier and any extension cable used are connected securely and according to the wiring diagram on pages 43 or 44 of the ORCA Manual and the label inside the ORCA Amplifier terminal cover.

- Take particular care that the first terminal from the right on the rear row (in the actuator terminal area) may need to be vacant for actuators shipped to some countries (6 wire actua-
TROUBLESHOOTING

tors). This terminal will carry the shield trace for the actuator cable in those countries where shielded cable is applied (6 wire + shield trace actuators).

-Ensure that if any extension cable or junction box is used, that all connections are correctly extended, and that terminals or junctions are secure, have reliable electrical contact, and are made watertight by correct sealing of glands, lids etc.

-Ensure that power supplied to the instrument is within the specifications given in the ORCA Manual page 3. If DC power is used, then the current capacity of the DC supply wiring is critical. The terminal voltage measured at the instrument during actuator movement must not drop by more than approximately 2V from its value during normal measurement with no actuator movement.

Software Settings:
-Ensure that the ‘Cleaning’ parameter in the ‘Output Ad’ menu is set to ‘Actuator’ (NOT ‘Actua In’ or ‘Actua Out’ which are test modes for manually driving the system).

-Ensure that sub-parameters in the ‘Cleaning’ menu are set to their default values at least until the system is operating correctly (they may be changed later for reasons such as adjustment of the cleaning sweep end stops).

Act Max 80.4mm
Act Min 53.6mm
Cycle 240.0min
Volt Drop 2.20V

With all the above checks made and correct, the actuator system should work correctly. To check for correct operation, go to the ‘Cleaning’ parameter under ‘OutputAd’ and select ‘Actua Out’, then press CAL. The actuator should move the transducer out to its end stop setting. Return to the ‘Cleaning’ parameter and select ‘Actua In’. The actuator should move the transducer back in to its home position. *The home position will leave the actuator slightly more extended than its minimum length. Final adjustment of the transducer mounting pole to be vertical should be done after the actuator has been operated at least once, and returned to its home position under its own power, as actuators may be shipped at their minimum extension length for protection of the sliding surface.

Adjustment of the pole can be done mechanically by small movements of the actuator hinge clamp location on the transducer mounting pole, or by changing the ‘Act Min’ end stop parameter in small steps, then manually cycling the actuator out then back in using the ‘Actua Out’ and ‘Actua In’ selections as above until the pole rests vertically when in the home position. *Changes to the ‘Act Min’ or ‘Act Max’ end stops will not be seen until the next cycle of actuator movement.

If the actuator does not move at all:
-Check again that all connections are secure and wire colours in terminals are correct.

If the actuator still does not operate when commanded manually, power the unit off, remove the actuator wiring connections at the amplifier terminals and make the following tests using a multimeter on the actuator wires at the amplifier end:

1. Measure resistance between the actuator BLACK and BROWN wires. You should find a resistance of approximately 10k ohms +/-500 ohms. This resistance is the position potentiometer total resistance.
TROUBLESHOOTING

2. Measure resistance between the actuator BLACK and BLUE wires. You should find a resistance between 0 and 10k ohms which will be different depending on the extension length of the actuator. If the actuator is fully collapsed, the resistance should be close to 0 ohms, at factory default minimum extension the resistance should be close to 1.8k ohms, and at factory default maximum extension the resistance should be close to 4.3k ohms, and fully extended it should be close to 10k ohms. This resistance is the position potentiometer resistance between its ground side and its output wiper.

3. Measure the resistance between the actuator BLUE and BROWN wires. You should find a resistance between 0 and 10k ohms which will be different depending on the extension length of the actuator. If the actuator is fully collapsed, the resistance should be close to 0 ohms, at factory default minimum extension the resistance should be close to 8.2k ohms, and at factory default maximum extension the resistance should be close to 5.7k ohms, and fully extended it should be close to 0 ohms. This resistance is the position potentiometer resistance between its output wiper and its reference supply input.

*The total resistance found in step 1 above should be very close to equal to the sum of the resistances found in steps 2 and 3. The exact part values at any length are not highly critical, but the total resistance must be approximately 10k ohms, and the two part resistances must add up to very close to the total resistance at any extension length.

4. Measure the resistance between the RED or YELLOW and GREEN or WHITE wires. You should find a resistance of between 1 and 15 ohms. This resistance is the actuator motor winding.

If any of the above resistances are found to be open circuit (infinite resistance) or short circuit (0 resistance) then the actuator position sensor, or motor, or its wiring are faulty. Check again any cable extensions or junction boxes, and check the cable for possible damage. If no solution is found, contact factory or Hawk supplier to order a replacement actuator.

If the actuator still does not operate when commanded manually, then with power applied to the amplifier and the actuator wiring disconnected make the following measurements on the amplifier terminals:

5. Measure the DC voltage between the Actuator ‘BLACK’ terminal and the Actuator ‘BROWN’ terminal. You should find a voltage of 3.2-3.4VDC. This is the reference supply voltage to the position potentiometer.

6. Measure the DC voltage between the Actuator ‘BLACK’ terminal and the Actuator ‘BLUE’ terminal. You should find a voltage close to 0 VDC. This is the input voltage terminal accepting the position signal from the position potentiometer wiper.

7. Measure the DC voltage between the amplifier DC input ‘+’ and ‘-’ terminals. You should find a stable voltage of approximately 22-28VDC. If the ORCA is being operated from an AC power supply, the DC voltage measured at the unused DC input terminals should be approximately 25-28VDC. This voltage is the amplifier power supply voltage, and is also the supply used to operate the actuator.
TROUBLESHOOTING

If the actuator will not operate at this point, having successfully checked all of the above items, power down the unit and re-connect all actuator wiring, paying careful attention to terminal positions and wire colours, then make the following tests:

8. Measure the DC voltage between the Actuator ‘BLACK’ terminal and the Actuator ‘BROWN’ terminal. You should find a voltage of 2.3-2.5VDC. This is the reference supply voltage to the position potentiometer.

9. Measure the DC voltage between the Actuator ‘BLACK’ terminal and the Actuator ‘BLUE’ terminal. You should find a voltage between 0 and 2.4VDC, which will take different values depending on the actuator extension. This voltage represents the position of the actuator piston, and will have a value around 0V at minimum extension, around 0.4V at the default home position, around 1.0V at the default actuator out position, and around 2.4V at maximum extension.
TROUBLESHOOTING

10. Prepare to measure the DC voltage between the ‘GREEN/WHITE’ actuator terminal, and the RED/YELLOW actuator terminal. Go to the ‘Cleaning’ parameter under ‘OutputAd’ and select ‘Actua Out’, then press CAL. Immediately measure the voltage detected. The actuator should move the transducer out to its end stop setting, and the YELLOW/RED terminal and wire should be approximately 22-26VDC higher in voltage than the GREEN/WHITE terminal and wire as the actuator moves. Return to the ‘Cleaning’ parameter and select ‘Actua In’. The actuator should move the transducer back in to its home position, and the YELLOW/RED terminal and wire should be approximately 22-26VDC lower in voltage than the GREEN/WHITE terminal and wire as the actuator moves.

If the actuator does not move, or makes a brief movement, jitter or noise, then stops:

11. Check again that all hinge joints are correctly assembled and free to move, and that the pole assembly is not caught by any obstruction.

12. Check the setting of the ‘Volt Drop’ parameter in the ‘Cleaning’ section of the ‘OutputAd’ menu. This parameter should have a default value of 2.20V. This is the limit of supply voltage change allowed at the amplifier during actuator operation.

13. Measure the DC voltage across the DC power supply input ‘+’ and ‘-’ terminals before actuator operation, and then during attempted actuator operation. The voltage should not drop significantly. If the voltage drops by more than 2V, then check the supply wiring and external power source and wiring current capacity. If the drop exceeds the 2.20V set in step 12 above, then the actuator controller will detect a fault and stop immediately. Do not adjust the ‘Volt Drop’ parameter higher to solve this problem, as higher resulting current drawn could damage switching components.

14. Power the unit off and remove the actuator GREEN/WHITE and YELLOW/RED wires from their terminals, and make a temporary connection of the GREEN/WHITE wire to the amplifier DC power input ‘-’ terminal. Power the amplifier on and briefly touch the YELLOW/RED wire to the amplifier DC power input ‘+’ terminal. The actuator should move so that the piston extension increases. Do not operate in this way for more than 1 second, or beyond the mechanical end of travel as the position will not be controlled. Power off the unit and exchange the wires so that the YELLOW/RED wire is temporarily connected to the amplifier DC input ‘-’ terminal. Power the amplifier on and briefly touch the GREEN/WHITE wire to the amplifier DC power input ‘+’ terminal. The actuator should move so that the piston extension decreases. Do not operate in this way for more than 1 second, or beyond the mechanical end of travel, as the position will not be controlled. If the actuator does not move at all during this test, then it has a motor fault. Check again any cable extensions or junction boxes, and check the cable for possible damage. If no solution is found, contact factory or Hawk supplier to order a replacement actuator. If movement is as expected, but actuator does not work under normal amplifier control with standard wiring to the actuator terminals, then the calibration of the position potentiometer to the piston extension may be incorrect. Follow the procedure below to recalibrate the position potentiometer.
Recalibrating the Actuator Piston Position Potentiometer

If the actuator piston is somehow rotated in an unknown way, it is possible that the piston position may not be correctly tracked by the internal position potentiometer. To recalibrate the position potentiometer, follow the steps below:

1. Power down the ORCA, remove the actuator from the bracket assembly, and remove all wiring connections to the actuator from the amplifier terminals.

2. Temporarily apply 24VDC (from the ORCA DC input ‘+’ and ‘-’ terminals or an external source) to the actuator motor drive wires so that the actuator piston fully retracts, and then immediately remove power. To retract the piston, 0V should be connected to the YELLOW/RED wire, and +24V should be temporarily connected to the GREEN/WHITE wire. It is likely that the piston will begin to rotate as it moves or when it reaches the fully retracted position. Hold the piston end lightly against rotation if it only rotates, without retracting, to allow the drive components to retract the piston correctly. As the piston becomes fully retracted, the rotating force will strongly increase. Remove power immediately as the stronger rotation occurs.

3. Hold the actuator housing steady, then grasp and rotate the piston end anti-clockwise (looking at the piston end) for 20 full turns from wherever it has stopped. The piston will extend during this rotation. After approximately 16.5 turns, mechanical resistance to rotation will increase sharply, and cease to extend, and you may hear the motor turning as the last few rotations are made. As you approach 20 turns, carefully stop the rotation so that the hinge pin holes in the piston end are aligned parallel to the hinge pin holes in the actuator fixed mount at the opposite end of the housing. Do not adjust the rotation in the reverse direction to correct alignment. If the alignment is missed slightly, continue to turn the piston anti-clockwise beyond the 20 turns for another ½ turn or more until the holes are correctly aligned, then stop.

4. Hold the actuator housing steady, then grasp and rotate the piston end clockwise (looking at the piston end) for exactly 16.5 full turns starting from the fully extended position with the hinge pin mount holes aligned parallel to one another. The piston will retract during this rotation. At 16.5 turns, mechanical resistance to rotation will increase sharply, and the piston will cease to retract. Stop immediately at this point, and adjust if necessary by less than ½ turn to align the hinge pin mounting holes at the piston end and rear of actuator housing so that they are again parallel. The actuator piston position potentiometer is now re-calibrated and the actuator is ready for re-installation.

If you are unable to rectify an actuator problem using the above information, please contact the factory or your Hawk supplier with detailed results of all of the above testing for further assistance.
TROUBLESHOOTING

ELECTRO ACTUATOR SET UP

1. Align parallel.
2. Inserted align.
3. X 20
4. X 18.5
5.
ORCA Remote Electronics

OSIR Sonar Level Transmitter with 1 or 2 analogue outputs and 3 relay alarms

Power Supply
- B 24 VDC
- D 90-250VAC and 24VDC

Additional Communications (PC comms GosHawk standard)
- X 1 x 4-20mA analogue output modules with Modbus Comms
- Y 2 x 4-20mA analogue output modules with Modbus Comms
- I 1 x 4-20mA analogue output modules with Modbus and HART Comms
- J 2 x 4-20mA analogue output modules with Modbus and HART Comms
- W Modbus comms only
- P Profibus DP
- A Profibus PA
- F Foundation Fieldbus
- E Ethernet
- D DeviceNet
- Z Special Request

External Hawklink Modem
- X Not required
- G2 GSM Frequency 800/1900 MHz/19200 Baud for USA, Canada
- G4 GSM Frequency 900/1800 MHz/192--Baud for Australia, Europe

OSIRMA Mounting Accessories

SH Stainless Steel Sunhood

Notes:
- *Cannot be used with internal HawkLink. Only can be used with remote HawkLink*
- **HawkLink cannot be used in Zone 0 / 20**
- ***Contact factory***
PART NUMBERING

Remote Sonar Transducer

OSIRT Acoustic Wave Remote Transducer

<table>
<thead>
<tr>
<th>Number of Crystals</th>
<th>0</th>
<th>1 Crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3 Crystal Array</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7 Crystal Array</td>
</tr>
</tbody>
</table>

Transducer Blanking

<table>
<thead>
<tr>
<th>Transducer Blanking</th>
<th>02 (150kHz) 450mm</th>
<th>03 (300kHz) 450mm</th>
<th>04 (450kHz) 450mm</th>
<th>05 (700kHz) 450mm</th>
</tr>
</thead>
</table>

Temperature and Facing material selection

<table>
<thead>
<tr>
<th>S</th>
<th>Standard Temperature Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Fibreglass High Temp Version with external preamplifier on 6m cable (110°C)</td>
</tr>
</tbody>
</table>

Transducer Housing Material

<table>
<thead>
<tr>
<th>4</th>
<th>Polypropylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Fibreglass High Temperature Housing, must be used w/ Fibreglass face</td>
</tr>
<tr>
<td>Z</td>
<td>Special</td>
</tr>
</tbody>
</table>

Approval Standard

<table>
<thead>
<tr>
<th>A0</th>
<th>ATEX CAT1 EEx_ia (Zone 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>SAA Ex_m (Zone 1)</td>
</tr>
<tr>
<td>X</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

Connection

<table>
<thead>
<tr>
<th>C</th>
<th>IP68 Sealed unit with 6 metre cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6m cable (Standard)</td>
</tr>
<tr>
<td>15</td>
<td>15m cable</td>
</tr>
<tr>
<td>30</td>
<td>30m cable</td>
</tr>
<tr>
<td>50</td>
<td>50m cable</td>
</tr>
</tbody>
</table>

PART NUMBER

OSIRT 0 02 S 4 X 6

* Choose the correct sonar transducer frequency according to the application

** Shorter blanking zone distance available

*** Pole length must be specified. For example 1m pole, L1.

**** Cable length must be specified next to C. Cable lengths available C6, C15, C30 and C50. Standard 6m cable.
PART NUMBERING

Accessories

Mounting Extension
OSIRME Mounting Extention Stainless Steel Pipe***

Length
L2 2 Meters
L3 3 Meters

OSIRME L2

*** Pole length must be specified. For example 1m pole, L1.

Automatic Scum Cleaner
OSIRSC Automatic Scum Cleaner

Type
A 24VDC Electric Actuator with Mounting Accessories
B Pneumatic Actuator (Please consult the factory)
C Rotary Scum Brush Cleaner
D Floating Sonar with 24VDC Electric Actuator with Mounting Accessories
E Impact Plate plus Mounting Bracket with Mounting Accessories

OSIRSC A

Radio Link
OSIRRL Radio Link

Region
R1 USA, Canada
R2 Australia, Europe
R3 Japan
R4 China

OSIRRL R1

HL Hawk Link

Type
E Circuit Board only for installing in to Sultan Remote c/w antenna (2). Not for 2 wire units.
R Remote stand alone system mounted in a Sultan Remote Enclosure c/w antenna.

Power Supply
B 24 VDC
U Universal 90-260VAC
X No power supply for E Selection

Network Type
G2 GSM Frequency 850/1900 mHz/19200 Baud for USA, Canada, Argentina, Chile
G4 GSM Frequency 900/1800 mHz/19200 Baud for Australia, Europe, Brazil
P Phone Line
E Ethernet

HL R U G4

Note:
If E option is selected no power supply option is required. Choose X.
APPLICATION REFERENCE

Monitoring Settling Blanket in a SBR (Sequent Batch Reactor)

Application problem
The client had blanket carry-over problems, which affected his EPA licence. The decant range was 0-1500 mm (0-60”)

Wastewater treatment plant
250 megalitre/day (65 million gallons/day)

Comments
We installed our floating sonar transmitter, with auto scum cleaner, close to one of seven launders in the tank. During aeration the sonar transmitter detected a high level blanket in suspension. Once the aeration period had stopped, the blanket settling was detected. Once the blanket had setted 1 m (3.2 ft) below the liquid height, the launders were introduced and decanting started.

Solution
Using the ORCA floating sonar stopped carry-over into the launders. Automating the decant phase, based on the blanket settling, increased efficiency and saved time during the settling phase.

Ordering information
Part number
OSIRDYX - transmitter
OSIRT003S4XC6 - Sonar transducer
OSIRSCD - Sonar Cleanser/Float/Brackets
OSIRME - L5 - Sonar Transducer SS Pole 5 m (16.5 ft)

Application guaranteed!
Sedimentation clarifiers for monitoring floc blanket height and water clarity

Application Problem:
The customer had used another brand of sonar technology, but the changing density of the floc blanket, required constant calibrating changes. The sonar would measure lower than the top of the floc blanket. The floc blanket was also very dynamic, due to hydraulic imbalance. Another problem was when the clarifier “slimed” and the floc blanket broke up and floated in suspension. It caused a buildup on the sonar transducer and required cleaning manually. The client wanted minimal operator intervention.

Solution:
Hawk installed a high frequency sonar transducer, optimized to cover the very light density floc blanket ranges, specified by the client. An automatic sludge cleaning system was also installed, to periodically clean the sonar transducer.

The sludge cleaner has a factory guarantee. The second analog output for the ORCA transmitter was used for measuring the clarity of the water, between the floc blanket and the face of the sonar transducer. This provided feedback to control room operators, of a process problem.

Ordering information: (complete system)
Part no:
OSIRDYX-OSIRT003S4XC6-OSIRMEL3-OSIRSC A

Application guaranteed!
APPLICATION REFERENCE

Tailings Thickeners
Improving water re-use by optimizing and automating flocculent dosing

Application Problem:
The customer from the mining industry wanted to optimize their tailing thickener on site. They wanted to improve the quality of the “clarified water” flowing over the launders and optimize the “BED” density.

Solution:
Settling efficiency changes in tailing thickeners when there are different ore bodies in the mine being processed simultaneously. Different ore bodies produce different settling characteristics, so one flocculent dose rate for one ore body type will not necessarily work for another ore body. To control the flocculent automatically based on settling characteristics, requires the sonar transmitter to monitor 2 independent interface densities.

1. BED Level (Heavy Density Compacted Interface)
2. MUD Layer (Lighter Density Affected by Settling Changes)

When the mud layer interface rises away from the heavier bed level interface, we increase the flocculent dose. As the mud layer interface descends back to the heavier bed level the flocculent dose rate is decreased.

This is the only way to optimize the settling efficiency in a tailings thickener or paste thickener’s, to compensate for different ore bodies. To optimize the bed density we must use the minimum flocculent as possible.

Hawk manufactures the largest range of sonar transducers to provide optimized performance, for all bed level thickener applications e.g concentrate thickeners etc.

Ordering information:
Tailings thickeners part no: OSIRDYX + OSIRT-303S4XC6 + OSIRME-L3 + OSIRSC-A

Application guaranteed!
APPLICATION REFERENCE

Reliable sonar bed level technology for waste water thickeners, for monitoring bed level height

Application Problem:
The customer wanted to reliably measure the bed level continuously of their thickeners, at a large US waste water treatment plant. The gravity thickened bed, was pumped by the underflow pump, to the digestor’s. It was critical for the efficient operation of the digestor’s, to receive a repeatable density feed from the thickeners. Because the thickeners used gravity settling, there were times that suspended solids were high.

Solution:
Hawk installed a low-frequency sonar transducer that penetrated through high levels of suspended solids, to measure the bed level interface. The 4-20mA output of the sonar transmitter, was used to control the underflow pump. By controlling the underflow pump, a repeatable density feed to the digestors was achieved. Hawk used their patented scum cleaning actuator, to keep the sonar transducer clean of build up.

The ORCA sonar transmitter has a second analogue output, that could be used to control a chemical dosing pump if chemical dosing to settle suspended solids was utilised.

Ordering information: (complete system)
Part no: OSIRDYX-OSIRT007S4XC6-OSIRMEL3-OSIRSCA

Application guaranteed!
Reliable sonar level technology for secondary and final clarifiers, controlling “RAS” blanket level and monitoring fluff/rag interface level

Application Problem:
The customer at a very large waste water treatment plant, in the US, wanted to improve control of the “RAS” density being returned to aeration and to the thickeners, from the rectangular secondary clarifier. The average “RAS” density returned, was too low at different times, caused by reduced plant inflow and upset process conditions. Low density “RAS” returned to aeration, reduced retention times. Low density “RAS” wasted to the thickeners, caused the thickeners bed level density to reduce, producing a problem downstream to the digestors and filter presses. Surface scum collectors moved along the surface of the tanks.

Solution:
Hawk installed an ORCA sonar transmitter, with an impact plate, that would raise the sonar transducer over the scum collectors. The sonar transducer frequency was matched to the “RAS” density, that the client wanted to monitor. The ORCA sonar transmitter would monitor an interface density of 4000 mg/litre, even in unsettled conditions. A 4-20mA output was provided for the “RAS” output. A second 4-20mA output was used to monitor the fluff/rag interface layer at approximately 600 mg/litre. When the tank and process were running correctly, the fluff/rag layer would trend parallel with the “RAS” blanket trend. If the process was unsettled, the fluff/rag layer would trend up towards the top of the tank, indicating possible process problems.

Ordering information: (complete system)
Part no: OSIRDYX-OSIRT002S4XC6-OSIRMEL3-OSIRSC

Application guaranteed!
APPLICATION REFERENCE

Concentrate Thickeners
Optimizing performance by monitoring dense “BED” level and providing information feedback to upstream process

Application Problem:
The customer from the mining industry wanted to optimize their Concentrate Thickener on site.

1. They wanted to monitor the heavy dense bed level to further optimize the underflow density being pumped to concentrate filter presses.

2. They wanted to use the heavy dense bed level measurements, for inventory control analysis.

3. They wanted improved information on the suspended solids levels in the recovered liquid flowing over the launders for upstream process feedback.

Solution:
1. Concentrate thickeners generally use gravity (no chemical floccing) only to settle out the concentrate particles. Therefore we must use a higher powered 7 crystal arrayed sonar transducer to penetrate the suspended solids to monitor the heavy density bed level. This provides adequate control and monitoring for the underflow pump to guarantee a high density bed being pumped to the concentrate filter press.

2. By monitoring the heavy density bed it allowed for repeatable measurement for inventory analysis on a programmed basis.

3. The second output of the array sonar transducer can be used to monitor the turbidity of suspended solids between the heavy bed density and the launder level, giving the process engineers feedback to their upstream process conditions.

4. Normally, concentrate thickeners utilize a surface boom scum rake that rotates around the surface of the thickener, to remove settled out scum/slag build-up. We utilize our impact plate cleaning mechanism, for the sonar transducer to ride over the surface boom, also as a means of cleaning the face of the sonar transducer.

Hawk manufacturers the largest range of sonar transducers to provide optimized performance, for all bed level thickener applications. Hawk also provides in-situ scum cleaning for the transducer.

Ordering information:
Part no: OSIRDYX + OSIERT703S4XC6 + OSI-RSC-E + OSIIRME-L3

Application guaranteed!
Reliable sonar bed level technology for coal mining thickeners, for monitoring bed level height and water clarity

Application problem:
The customer had used a sonar system that would only work when the thickener settled well. As soon as there was a change in settling characteristics, with an increase of suspended solids, the sonar would not detect the bed level, but showed a high level.

Solution:
The original sonar was a high frequency transducer and only designed for clean water treatments plants. High frequency sonar sensors are very good for light densities only.

Hawk installed a low frequency sonar transducer, complete with an automatic sludge cleaner, that penetrated the suspended solids and operated off the heavier density bed level.

The sludge cleaning mechanism has a factory guarantee. The sonar also provided a second output, that monitored clarity of the water, as feedback to how well the floc chemical dosing was operating. Cleaning mechanism are also available for surface boom scrapers.

Hawk manufactures the largest range of sonar transducers, to provide optimized performance for all bed level density applications.

Ordering information: (complete system)
Part no: OSIRDYX-OSIRT007S4XC6-OSIRMEL-OSIRSC A

Application guaranteed!